

Ens. : Stefano Francesco Burzio MATH-189 Mathématiques - AR

18 janvier 2022 Durée : 180 minutes 1

Leonhard Euler

 $\mathrm{SCIPER}\colon 111111$

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé recto-verso, il contient 8 pages, les dernières pouvant être vides. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table.
- Un formulaire personnel de 2 feuilles A4 recto-verso est autorisé.
- L'utilisation d'une calculatrice non graphique et non programmable est autorisé.
- L'utilisation de tout autre **outil électronique** est interdite pendant l'épreuve.
- Aucun autre document n'est autorisé.
- Pour les questions à choix multiple, on comptera:
 - +1 points si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - -0.2 point si la réponse est incorrecte.
- Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien									
choisir une réponse sele Antwort auswäh		ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen				Corriger une réponse Correct an answer Antwort korrigieren			
\times									
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte									

Questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 La droite passant par les points $A = (e, \pi)$ et $B = (\pi, e)$ coupe l'axe Oy dans le point P. Quelles sont les coordonnées du point P?

- $P(-e-\pi,0)$
- $\square P(0, e + \pi)$
- $P(0, e-\pi)$
- $P(0,\pi-e)$

Question 2 On considère la courbe γ définie par la function $f(x) = x^3$ et un point A = (-1, -1) sur celle-ci. Le rayon r du cercle osculateur de la courbe γ au point A vaut.

- $r = -\frac{10^{3/2}}{6}$

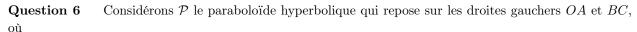
Question 3 Soit $x, y \in \mathbb{R}$ avec x > y. Alors l'expression $\ln(x^2 - y^2)$ vaut

Question 4 Parmi les affirmations suivantes, sélectionner laquelle est correcte.

- La développée de la développante d'une courbe redonne la courbe d'origine.
- La développée de la développée d'une courbe redonne la courbe d'origine.
- La développante de la développée d'une courbe redonne la courbe d'origine.
- La développante de la développante d'une courbe redonne la courbe d'origine.

Question 5 Dans une expérience on constate que la temperature d'un gaz augmente chaque seconde de 1%. Après combien de secondes environ (au centième près) ce gaz est-il 5 fois plus chaud qu'au départ de l'expérience ?

- Après 161,95 secondes
- Après 161,75 secondes
- Après 161, 25 secondes
- Après 162,05 secondes



$$O = (0,0,0), \quad A = (2,1,0), \quad B = (0,1,1), \quad C = (3,0,2).$$

Les droites OA et BC se situent donc sur paraboloïde hyperbolique. Une équation paramétrique de \mathcal{P} est donnée par :

- $S(s,t) = (2t+3ts, t+s+2st, s+st) \text{ avec } 0 \le s \le 1 \text{ et } 0 \le t \le 1$
- $S(s,t) = (2t, 2s, 2s + 2t 4st) \text{ avec } 0 \le s \le 1 \text{ et } 0 \le t \le 1$
- $S(s,t) = (2t+ts, t+s-st, 2s+ts) \text{ avec } 0 \le s \le 1 \text{ et } 0 \le t \le 1$
- S(s,t) = (2t + st, t + s 2st, s + st) avec $0 \le s \le 1$ et $0 \le t \le 1$

Question 7 Soient quatres points A, B, C et D distincts dans le plan Oxy et deux vecteurs \vec{u} et \vec{v} non nuls dans le plan Oxy. Parmi les affirmations suivantes, sélectionner laquelle est correcte.

- Si \vec{u} et \vec{v} sont orthogonaux et $||\vec{u}|| = 3$, $||\vec{v}|| = 2$ alors $(\vec{u} \vec{v}) \cdot (2\vec{u} + \vec{v}) = 14$.
- \square Si $\overrightarrow{AB} \cdot \overrightarrow{AC} = 5$ et $\overrightarrow{AB} \cdot \overrightarrow{AD} = 7$ alors $\overrightarrow{AB} \cdot \overrightarrow{CD} = 12$.
- \square Si les points A, B et C sont alignés alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{BC}$.
- Si $\|\vec{u}\| = 6$, $\|\vec{v}\| = 2$ et $\vec{u} \cdot \vec{v} = 24$ alors l'angle entre les vecteurs \vec{u} et \vec{v} vaut $\arccos(1/4)$.

Question 8 Soient a, b, c trois nombres distincts. Le polynôme d'interpolation P(x) passant par les points (0, a), (1, b), (2, c) est

- $P(x) = a + (b a)x + \frac{a + c}{2}x(x 1)$
- $P(x) = a + (b a)x + \frac{a + b + c}{2}x(x 1)$
- P(x) = a + (b a)x
- $P(x) = a + (b-a)x + \frac{a-2b+c}{2}x(x-1)$

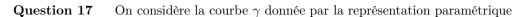
Question 9 Quel est le polynôme de Taylor à l'ordre 5 de $\cos(x) - \sin(x)$ autour de 0 ?

- $1 x \frac{x^2}{2} \frac{x^3}{6} \frac{x^4}{24} \frac{x^5}{120}$

Question 10 L'équation de la droite tangente à la courbe $y = \sin(\log_{10} x)$ au point $P = (10^{\pi}, 0)$ est

- $y = -\frac{1}{10^{\pi} \ln(10)} x + \frac{1}{\ln(10)}$
- $y = \frac{\ln(10)}{10^{\pi}}x + \ln(10)$
- $y = 10^{\pi} \ln(100^{\pi})x$
- $y = 10^{-\pi}x + 1$

Question 11 La longueur d'arc de la courbe définie par la function $f(x) = \frac{1}{2}\cosh(2x)$ entre 0 et 2 vaut
Question 12 Le plan passant par les points $A=(0,1,-1),\ B=(2,-1,1)$ et $C=(1,1,0)$ a comme équation paramétrique
$ [] (2\alpha+\beta,1-2\alpha+\beta,-1+\alpha), \text{ avec } \alpha,\beta\in\mathbb{R} $
$ (2\alpha + \beta, -3\alpha - 2\beta + 1, -1 + 2\alpha + \beta), \text{ avec } \alpha, \beta \in \mathbb{R} $
$ (2\alpha + \beta, 1 - 2\alpha, -1 + 2\alpha + \beta), \text{ avec } \alpha, \beta \in \mathbb{R} $
Question 13 Dans le plan Oxy , l'ellipse $(x-1)^2 + \left(\frac{y-2}{3}\right)^2 = 1$ admet comme paramétrisation :
$ (-\cos(\theta), -2\sin(\theta) + 3) \text{ avec } 0 \le \theta \le 2\pi $
$ (\cos(\theta), 3\sin(\theta)) \text{ avec } 0 \le \theta \le 2\pi $
$ (\cos(\theta) + 1, 3\sin(\theta) + 2) \text{ avec } 0 \le \theta \le 2\pi $
Question 14 L'aire latérale de la surface de révolution S obtenue en faisant tourner la courbe $\gamma(t)=(t,0,t)$ autour de l'axe Oz , pour t allant de 1 à 24 vaut
$\prod \pi \sqrt{2}(24^2 - 1)$
Question 15 Quelle est la valeur maximale de $g(x) = e^{-(x+1)^2}$?
1
e
Question 16 L'expression $\cosh(4x)$ vaut
$ 1 + 8\cosh^2(x)\sinh^2(x) $
$ 1 + 2\cosh^2(x)\sinh^2(x) $



$$\gamma(t) = \left(t^3 + 2, \, \frac{4}{3}t^3 - 1\right)$$

où $t \in \mathbb{R}$. La développante en $P = (1, -\frac{7}{3})$ est la courbe $\sigma(a) = (x(a), y(a))$ avec $a \in \mathbb{R}$, définie par :

$$x(a) = 1 + a^3 \text{ et } y(a) = -\frac{7}{3} + \frac{8}{3}a^3$$

$$x(a) = 1 + 2a^3 \text{ et } y(a) = -\frac{7}{3}$$

$$x(a) = 1 \text{ et } y(a) = -\frac{7}{3}$$

Question 18 La surface de révolution S obtenue en faisant tourner la courbe

$$\gamma(t) = (\cosh(t), \sinh(t), 0), \qquad t \in \mathbb{R}$$

autour de l'axe Oy admet comme paramétrisation :

- $(\cosh(t)\cos(\alpha), \sinh(t)\sin(\alpha), \cosh(t)\cos(\alpha)), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$
- $(\cosh(t)\cos(\alpha), \sinh(t)\sin(\alpha), \sinh(t)), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$
- $(\cosh(t)\cos(\alpha), \sinh(t), \sinh(t)\cos(\alpha)), \text{ avec } t \in \mathbb{R} \text{ et } 0 \leq \alpha \leq 2\pi$
- $(\cosh(t)\cos(\alpha), \sinh(t), \cosh(t)\sin(\alpha)), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$

Question 19 L'aire sous la courbe $f(x) = \frac{1}{x}$ entre les droites verticales x = 1 et $x = e^2$ vaut

- □ €

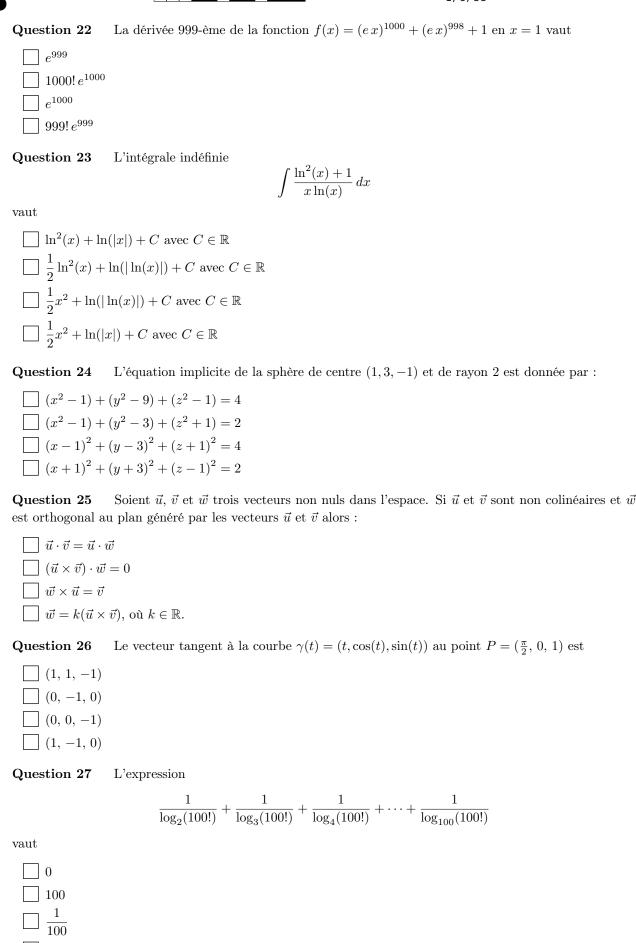
- $\prod 1$

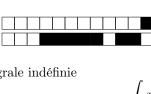
Question 20 Soit γ la courbe de Bèzier de degré 4 ayant comme points de contrôle $P_0 = (0,0)$, $P_1 = (0,1)$, $P_2 = (1,1)$, $P_3 = (1,0)$ et $P_4 = (0,0)$. Veuillez sélectionner l'affirmation correcte.

- \square La courbe γ est un cercle.
- La courbe γ est une courbe qui se referme sur elle-même.
- la courbe γ passe par le point P_3 .
- La courbe γ passe par le point P_2 .

Question 21 Soit $a \in \mathbb{R}$. Un point $P_0 = (2a, 0)$ se déplace horizontalement sur l'axe Ox et un point $P_1 = (0, 10 - 2a)$ se déplace verticalement sur l'axe Oy. L'enveloppe de la famille de droites passant par ces deux points est donnée par la courbe :

$$x(a) = \frac{a^2}{10}$$
 et $y(a) = \frac{a^2}{40} - a + 10$ où $a \in \mathbb{R}$.





Question 28 L'intégrale indéfinie

$$\int x \sinh(x) \, dx$$

vaut

$x \cosh(x) - \sinh(x) + C \text{ avec } C \in \mathbb{R}$
$x(\cosh(x) - \sinh(x)) + C$ avec $C \in \mathbb{R}$

 $x \sinh(x) + C \text{ avec } C \in \mathbb{R}$

 $x \sinh(x) + \cosh(x) + C \text{ avec } C \in \mathbb{R}$

Question 29 Soit $x \in [0,1]$ un nombre. L'expression $\cos(\arcsin(x)) + \sin(\arccos(x))$ vaut

 $2\sqrt{1-x^2}$

 $\prod 1$

Question 30 Si q(x) et r(x) sont deux polynômes non nuls de degré $m \in \mathbb{N}$ et $n \in \mathbb{N}$ respectivement.

Alors:

	a(\dot{x}	r	(x)) est	un	polynôme	de	degré	m	+	n
	91	···	,,,	(u)	, 050	un	polynome	uc	acgre	110	- 1	10

Question 31 La pente de la courbe paramétrique $\gamma(\alpha) = (\alpha e^{\alpha}, \alpha^2 + 2\alpha)$ où $\alpha \in \mathbb{R}$, au point P = (e, 3) vaut

 $\sqsubseteq e$

 $\bigsqcup \frac{1}{e}$

 $\Box \frac{e}{2}$

Question 32 Le volume engendré par la surface de révolution S obtenue en faisant tourner la courbe $\gamma(t) = (e^t, 0, t^2 + t)$ autour de l'axe Oz, pour t allant de 1 à 4 vaut

 $e^2\pi(4e^6-1)$

 $\Box +\infty$

0